Results of the 2013 IEEE CEC Competition on Niching Methods for Multimodal Optimization

X. Li1, A. Engelbrecht2, and M.G. Epitropakis3

1School of Computer Science and Information Technology, RMIT University, Australia

2Department of Computer Science, University of Pretoria, South Africa

3CHORDS Group, Computing Science and Mathematics, University of Stirling, UK

IEEE Congress on Evolutionary Computation, 20-23 June, Cancun, Mexico, 2013
Outline

1. Introduction
2. Participants
3. Results
4. Winners
5. Summary
Numerical optimization is probably one of the most important disciplines in optimization. Many real-world problems are “multimodal” by nature, i.e., multiple satisfactory solutions exist.

Niching methods: promote and maintain formation of multiple stable subpopulations within a single population.

- **Aim:** maintain diversity and locate multiple globally optimal solutions.

Challenge: Find an efficient optimization algorithm, which is able to locate multiple global optimal solutions for multimodal problems with various characteristics.
Provide a common platform that encourages fair and easy comparisons across different niching algorithms.

- 20 benchmark multimodal functions with different characteristics
- 5 accuracy levels: $\varepsilon \in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$
- The benchmark suite and the performance measures have been implemented in: C/C++, Java, MATLAB
Benchmark function set

<table>
<thead>
<tr>
<th>Id</th>
<th>Dim.</th>
<th># GO</th>
<th>Name</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>1</td>
<td>2</td>
<td>Five-Uneven-Peak Trap</td>
<td>Simple, deceptive</td>
</tr>
<tr>
<td>F_2</td>
<td>1</td>
<td>5</td>
<td>Equal Maxima</td>
<td>Simple</td>
</tr>
<tr>
<td>F_3</td>
<td>1</td>
<td>1</td>
<td>Uneven Decreasing Maxima</td>
<td>Simple</td>
</tr>
<tr>
<td>F_4</td>
<td>2</td>
<td>4</td>
<td>Himmelblau</td>
<td>Simple, non-scalable, non-symmetric</td>
</tr>
<tr>
<td>F_5</td>
<td>2</td>
<td>2</td>
<td>Six-Hump Camel Back</td>
<td>Simple, not-scalable, non-symmetric</td>
</tr>
<tr>
<td>F_6</td>
<td>2,3</td>
<td>18,81</td>
<td>Shubert</td>
<td>Scalable, #optima increase with D, unevenly distributed grouped optima</td>
</tr>
<tr>
<td>F_7</td>
<td>2,3</td>
<td>36,216</td>
<td>Vincent</td>
<td>Scalable, #optima increase with D, unevenly distributed optima</td>
</tr>
<tr>
<td>F_8</td>
<td>2</td>
<td>12</td>
<td>Modified Rastrigin</td>
<td>Scalable, #optima independent from D, symmetric</td>
</tr>
<tr>
<td>F_9</td>
<td>2</td>
<td>6</td>
<td>Composition Function 1</td>
<td>Scalable, separable, non-symmetric</td>
</tr>
<tr>
<td>F_{10}</td>
<td>2</td>
<td>8</td>
<td>Composition Function 2</td>
<td>Scalable, separable, non-symmetric</td>
</tr>
<tr>
<td>F_{11}</td>
<td>2,3,5,10</td>
<td>6</td>
<td>Composition Function 3</td>
<td>Scalable, non-separable, non-symmetric</td>
</tr>
<tr>
<td>F_{12}</td>
<td>2,3,5,10</td>
<td>8</td>
<td>Composition Function 4</td>
<td>Scalable, non-separable, non-symmetric</td>
</tr>
</tbody>
</table>
Measures:

Peak Ratio (PR) measures the average percentage of all known global optima found over multiple runs:

$$PR = \frac{\sum_{run=1}^{NR} \# \text{ of Global Optima}_i}{(\# \text{ of known Global Optima}) \times (\# \text{ of runs})}$$

Who is the winner:

- The participant with the highest average Peak Ratio performance on all benchmarks wins.
- In all functions the following holds: the higher the PR value, the better.
Participants

Submissions to the competition:

- E-1682: **(PNA-NSGAII)** A Parameterless-Niching-Assisted Bi-objective Approach to Multimodal Optimization
- E-1419: **(N-VMO)** Variable Mesh Optimization for the 2013 CEC Special Session Niching Methods for Multimodal Optimization
- E-1449: **(dADE/nrand/1,2)** A Dynamic Archive Niching Differential Evolution algorithm for Multimodal Optimization
- Mike Preuss: **(NEA1, NEA2)** Niching the CMA-ES via Nearest-Better Clustering [2]
Participants (2)

Implemented algorithms for comparisons:

- **(A-NSGAII)** A Bi-objective NSGA-II for multimodal optimization (taken from E-1682)[1]
- **(CrowdingDE)** Crowding Differential Evolution [3]
- **(DE/nrand/1,2)** Niching Differential Evolution algorithms with neighborhood mutation strategies [5]
- **(CMA-ES, IPOP-CMA-ES)** CMA-ES/IPOP-CMA-ES with a restart procedure and a dummy archive. [6,7]

Mike Preuss: CMA-ES, IPOP-CMA-ES, MG Epitropakis: DE/nrand/1,2, DECG, DELG, DELS-aj, CrowdingDE
Results

Summary:

- 4 submissions/teams from six countries (four continents)
- 15 algorithms
- 20 benchmark functions
- 5 accuracy levels $\varepsilon \in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$

Results: per accuracy level & over all accuracy levels
Accuracy level $\varepsilon = 10^{-1}$

Accuracy level 1.0e−1

Benchmark function

A-NSGAII
CMA-ES
CrowdingDE
dADE/nrand/1
dADE/nrand/2
DECG
DELS~aj
DE/nrand/1
DE/nrand/2
IPOP-CMA-ES
NEA1
NEA2
N-VMO
PNA-NSGAII

Peak Ratio in all benchmark functions
Results

Accuracy level $\epsilon = 10^{-2}$

Accuracy level $1.0e^{-2}$

Benchmark function
5
10
15
20
A−NSGAII
CMA−ES
CrowdingDE
dADE/nrand/1
dADE/nrand/2
DECG
DELG
DELS−aj
DE/nrand/1
DE/nrand/2
IPOP−CMA−ES
NEA1
NEA2
N−VMO
PNA−NSGAII

Peak Ratio in all benchmark functions

Algorithms
- A−NSGAII
- CMA−ES
- CrowdingDE
dADE/nrand/1
dADE/nrand/2
DECG
DELG
DELS−aj
DE/nrand/1
DE/nrand/2
IPOP−CMA−ES
NEA1
NEA2
N−VMO
PNA−NSGAII

X. Li, A. Engelbrecht, and M.G. Epitropakis
IEEE CEC 2013 Competition on Niching Methods
Results

Accuracy level $\varepsilon = 10^{-3}$

Accuracy level 1.0×10^{-3}

Benchmark function

A-NSGAII
CMA-ES
CrowdingDE
dADE/nrand/1
dADE/nrand/2
DECG
DELG
DELS-aj
DE/nrand/1
DE/nrand/2
IPOP-CMA-ES
NEA1
NEA2
N-VMO
PNA-NSGAII

Peak Ratio in all benchmark functions

Algorithms

Accuracy level 1.0e−3
Accuracy level $\varepsilon = 10^{-4}$
Accuracy level $\epsilon = 10^{-5}$

![Graph showing results of different algorithms for accuracy level 1.0×10^{-5}]

Algorithms
- A-NSGAII
- CMA-ES
- CrowdingDE
- dADE/nrand/1
- dADE/nrand/2
- DECG
- DELG
- DELS-aj
- DE/nrand/1
- DE/nrand/2
- IPOP-CMA-ES
- NEA1
- NEA2
- N-VMO
- PNA-NSGAII

X. Li, A. Engelbrecht, and M.G. Epitropakis

IEEE CEC 2013 Competition on Niching Methods
Overall performance (1)

Results

Peak Ratio in all benchmark functions

All Accuracy levels

Algorithms

A–NSGAII
CMA–ES
CrowdingDE
dADE/nrand/1
dADE/nrand/2
DECG
DELG
DELS–aj
DE/nrand/1
DE/nrand/2
IPOP–CMA–ES
NEA1
NEA2
N–VMO
PNA–NSGAII

X. Li, A. Engelbrecht, and M.G. Epitropakis

IEEE CEC 2013 Competition on Niching Methods
Overall performance (2)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Median</th>
<th>Mean</th>
<th>St.D.</th>
<th>Rank</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-NSGAII</td>
<td>0.0740</td>
<td>0.3275</td>
<td>0.4044</td>
<td>15</td>
<td>3.1450</td>
</tr>
<tr>
<td>CMA-ES</td>
<td>0.7550</td>
<td>0.7137</td>
<td>0.2807</td>
<td>3</td>
<td>10.2300</td>
</tr>
<tr>
<td>CrowdingDE</td>
<td>0.6667</td>
<td>0.5731</td>
<td>0.3612</td>
<td>8</td>
<td>7.7900</td>
</tr>
<tr>
<td>dADE/nrand/1</td>
<td>0.7488</td>
<td>0.7383</td>
<td>0.3010</td>
<td>2</td>
<td>10.6700</td>
</tr>
<tr>
<td>dADE/nrand/2</td>
<td>0.7150</td>
<td>0.6931</td>
<td>0.3174</td>
<td>5</td>
<td>9.6200</td>
</tr>
<tr>
<td>DECG</td>
<td>0.6567</td>
<td>0.5516</td>
<td>0.3992</td>
<td>13</td>
<td>6.4950</td>
</tr>
<tr>
<td>DELG</td>
<td>0.6667</td>
<td>0.5706</td>
<td>0.3925</td>
<td>11</td>
<td>7.0350</td>
</tr>
<tr>
<td>DELS-aj</td>
<td>0.6667</td>
<td>0.5760</td>
<td>0.3857</td>
<td>12</td>
<td>7.0250</td>
</tr>
<tr>
<td>DE/nrand/1</td>
<td>0.6396</td>
<td>0.5809</td>
<td>0.3338</td>
<td>9</td>
<td>7.7600</td>
</tr>
<tr>
<td>DE/nrand/2</td>
<td>0.6667</td>
<td>0.6082</td>
<td>0.3130</td>
<td>6</td>
<td>8.3200</td>
</tr>
<tr>
<td>IPOP-CMA-ES</td>
<td>0.2600</td>
<td>0.3625</td>
<td>0.3117</td>
<td>14</td>
<td>3.8900</td>
</tr>
<tr>
<td>NEA1</td>
<td>0.6496</td>
<td>0.6117</td>
<td>0.3280</td>
<td>10</td>
<td>7.6300</td>
</tr>
<tr>
<td>NEA2</td>
<td>0.8513</td>
<td>0.7940</td>
<td>0.2332</td>
<td>1</td>
<td>11.9300</td>
</tr>
<tr>
<td>N-VMO</td>
<td>0.7140</td>
<td>0.6983</td>
<td>0.3307</td>
<td>4</td>
<td>10.1550</td>
</tr>
<tr>
<td>PNA-NSGAII</td>
<td>0.6660</td>
<td>0.6141</td>
<td>0.3421</td>
<td>7</td>
<td>8.3050</td>
</tr>
</tbody>
</table>
Winners

Ranking based on average PR values

1. **NEA2** (Mike Preuss) Niching the CMA-ES via Nearest-Better Clustering
2. **dADE/nrand/1** (E-1449) A Dynamic Archive Niching Differential Evolution algorithm
3. **CMA-ES** (Mike Preuss) CMA-ES with simple archive
4. **N-VMO** (E-1419) Niching Variable Mesh Optimization algorithm

Note: The algorithms have not been fine-tuned for the specific benchmark suite!
Conclusions

Summary

- Four teams from six countries (four continents)
- **Winner:** NEA2 (Mike Preuss) Niching the CMA-ES via Nearest-Better Clustering
 - Competitive on average performance, (nearest-better clustering, archive mechanism, CMA-ES)
- Places 2 to 4 very close:
 - dADE/nrand/1 (E-1449) A Dynamic Archive Niching Differential Evolution algorithm
 - CMA-ES (Mike Preuss) CMA-ES with simple archive
 - N-VMO (E-1419) Niching Variable Mesh Optimization algorithm

X. Li, A. Engelbrecht, and M.G. Epitropakis
IEEE CEC 2013 Competition on Niching Methods
Conclusions (2)

- The competition gave a boost to the multimodal optimization community
- New competitive and very promising approaches

Key characteristics of the algorithms:

- Many attempts to overcome the influence of the algorithm’s parameters (niching parameters, population size)
- Usage of Archives to maintain good solutions
- Multiobjectivization, Clearing, Clustering and neighborhood mutation-based niching techniques
- Algorithms: Differential Evolution, CMA-ES, Variable Mesh Optimization and NSGAII
Future Work

Possible objectives:

- Re-organize the competitions in future
- Enhance the benchmark function set
- Introduce new performance measures
- Automate the experimental design and results output
- Boost multimodal optimization community
We really want to thank for their help:

- The participants :-)
- Dr. Jerry Swan, University of Stirling, Scotland, UK
- Dr. Mike Preuss, TU Dortmund, Germany
- Dr. Daniel Molina Cabrera, University of Cadiz, Spain
- Dr. Catalin Stoean, University of Craiova, Romania
Thank you very much for your attention :-)

Questions ???

Xiaodong Li: xiaodong.li@rmit.edu.au
Andries Engelbrecht: engel@driesie.cs.up.ac.za
Michael G. Epitropakis: mge@cs.stir.ac.uk

