Introduction to Belief Desire Intention Agents

Lin Padgham

RMIT University, Melbourne, Australia
BDI (Belief Desire Intention) agents have been used in many successful applications in complex environments.
Belief Desire Intention Model of Agency

• BDI is a framework for describing the behaviour of rational agents.

• Based on work in the philosophy of mind:

 Intentional systems: “[..] whose behavior can be predicted by the method of attributing belief, desires and rational acumen.”

 Practical reasoning: “[..] a matter of weighing conflicting considerations [..] provided by what the agent desires [and] believes.”

• Human practical reasoning consists of two activities:
 • Deliberation: deciding what to do i.e., form intentions.
 • Means-ends Reasoning: deciding how to do it i.e., form plans.
A plan is a *programmed* recipe for achieving a goal in some situation. A BDI execution engine selects from a plan library, based on the situation.
• A plan typically has a number of (sub)goal steps.
• Each sub-goal generates an (internal) event which has some relevant plans.
• So the plan library can be seen as a set of goal-plan trees.
• At each goal node a plan must be selected (OR).
• At each plan node the goals must be accomplished (AND).
BDI Agent-Oriented Programming

- BDI Agent-Oriented Programming provides abstraction at the level of mental attitudes to explain the operation of a system. Beliefs, Desires, Intentions.

- The modularity of plans makes it easy to develop complexity incrementally.

- The goal oriented approach makes it suitable for use in dynamic environments.

- Many efficient and powerful development environments available. JACK, Jadex, Jason, PRS, 2APL, ...

- BDI agent programs are fast to develop. A 2006 study showed:
 - Gain compared to Java programming 500%.
Example Plan Structure

- **goal**: RespondBushfire
- **plan**:
 - **Action**
 - **M:msg**

ObtainTransport
- GetCar
- ArrangeLift
- NoTransport

AssembleMembers
- HouseAssemble
- DistAssemble

MoveSafeLoc
- WalkToLoc
- DriveToLoc
- WaitPickUp

DetermineLoc
- Walk(L)
- Drive(L)

EvacHouse
- Stay&Defend

Walk(Door)
- M:toDoor

GetFromRadio

LocalShelter

LeaveTown
A plan is a sequence of steps
A step can be a **goal**, an **action**, a **message** to another agent, or some computation.
Example Plan Structure

A goal may have different plans, for achieving it in different situations.
A goal may have different plans, for achieving it in different situations.
A goal may have different plans, for achieving it in different situations.
A goal may have **different plans**, for achieving it in **different situations**.
Example Plan Structure

For a goal to succeed one of the plans must succeed. If one fails try another.
Example Plan Structure

For a plan to succeed, all steps must succeed.
Example Plan Structure

If things fail, recovery happens as locally as possible
Plan selection **responsive** to changing environment.
Advantages

• Intuitive representation

• Late selection: situation aware...

• Plan failure - retry new plan. Committed to choices, like humans.

• Agent is responsive to environmental changes.

• Huge number of options possible - over 2 million for modest tree. (Subgoal steps 4, Choices 2, Depth 3)