Representation and Reasoning for Goalsin BDI Agents

John Thanagar ajah

Lin Padgham

James Harland

School of Computer Science and Information Technology, RMIT University
GPO Box 2476V, Melbourne, 3001, AUSTRALIA
{j oht han,l i npa,jah}@s.rmt.edu. au

Abstract

A number of agent-oriented programming systems are
based on a framework of beliefs, desires and intentions
(BDI) and more explicitly on the BDI logic of Rao and
Georgeff. In this logic, goals are a consistent set of de-
sires, and this property is fundamental to the semantics of
the logic. However, implementations based on this frame-
work typically have no explicit representation of either de-
sires or goals, and consequently no mechanisms for check-
ing consistency. In this paper we address this gap between
theory and practice by giving an explicit representation
for a simple class of desires. The simplicity of this class
makes it both straightforward and efficient to check for
consistency. We provide a general framework for conflict
resolution based on a preference ordering of sets of goals,
and we illustrate how different rules for specifying consis-
tent goal sets (corresponding to different preference order-
ings) relate to existing commitment strategies. We also re-
port on some implementation experiments which confirm
that the cost of consistency maintenance is not significant.

1 Introduction

An increasingly popular programming paradigm is that
of agent-oriented programming. This paradigm, often
described as a natural successor to object-oriented pro-
gramming [Jen01], is highly suited for applications which
are embedded in complex dynamic environments, and is
based on human concepts, such as beliefs, goals and plans.
This allows a natural specification of sophisticated soft-
ware systems in terms that are similar to human under-
standing (and hence can represent idealised human “ac-
tors”), thus permitting programmers to concentrate on the
critical properties of the application rather than getting
absorbed in the intricate detail of a complicated environ-
ment. Agent technology has been used in areas such as
air traffic control, automated manufacturing, and the space
shuttle [JW98].

Whilst there are many possible conceptions of agent-
oriented programming, one of the most popular and suc-
cessful such conceptions is the framework of Rao and
Georgeff [RG91], in which the notions of Belief, Desire
and Intention are central, and hence are often referred to
as BDI agents. Roughly speaking, beliefs represent the
agent’s current knowledge about the world, including in-
formation about the current state of the environment in-
ferred from perception devices (such as cameras or micro-
phones) and messages from other agents, as well as inter-
nal information. Desires represent a state which the agent
is trying to achieve, such as the safe landing of all planes
currently circling the airport, or the achievement of a cer-
tain financial return on the stock market. Intentions are
the chosen means to achieve the agent’s desires, and are
generally implemented as plans (which may be thought of
as procedures which come with pre-conditions (to deter-
mine when a plan is applicable) and post-conditions (to
state what is achieved upon the successful completion of

the plan)).

Rao and Georgeff gave both a logical system incorpo-
rating these concepts [RG91] (a version of temporal logic
extended to include the appropriate notions of belief, de-
sire and intension) and an architecture for the executing of
programs following the BDI paradigm [RG92].

As in general an agent may have multiple desires, an
agent can have a number of intentions active at any one
time. These intentions may be thought of as running con-
currently, with one chosen intention active at any one time.
Hence an agent’s plans may be thought as executing in a
singly-threaded concurrent mode.

Whilst classic planning systems (such as STRIPS) may
seem similar, such systems are actually significantly more
sophisticated. In particular, a balance must be struck be-
tween reactive behaviour (i.e. responding to changes in
the environment which may affect the applicability and/or
outcomes of a given plan) and proactive behaviour (i.e.
persisting with the current plan in order to achieve the
desired outcomes). In such systems it is entirely possi-
ble that a plan can become inapplicable and doomed to
failure during its execution because of changes in the en-
vironment. The way that a balance is achieved between
these two competing demands is to have a library of pre-
compiled plans, and that periodically a check is made on
the applicability of the plan (or plans) currently executing.
At this point it is possible to switch between concurrently
executing plans, or to abandon a current plan in favour of
another. However, note that in the latter case the former
plan is then abandoned and is not re-tried, and so plans
only get one chance to succeed. This may be thought of as
demonstrating a certain level of trust in the plan; if it fails,
then it is presumably due to environmental changes rather
than any inherent problem with the plan itself.

In such an environment, conflicts can arise between
goals (i.e. goals can be inconsistent with each other) or
between plans (such as two plans needing exclusive ac-
cess to a particular resource). In general such conflicts are
impossible or infeasible to detect in advance, and hence
run-time techniques are required in order to detect and re-
solve such conflicts.

The main technical contribution of this paper is the
definition of a number of ways of maintaining goal consis-
tency and the linking of these to commitment styles, along
with an empirical evaluation of the cost of these mecha-
nisms. A general framework is also presented which al-
lows for additional commitment styles to be defined.

This paper is organised as follows. In Section 2 we
give some background on BDI agents and in Section 3 we
discuss the issue of representing goals (and hence being
able to analyse the source of conflicts). Section 4 deals
with rules for determining consistent sets of goals and in
Section 5 we present some results on the efficiency of the
implementation of these rules. Finally in Section 6 we
present our conclusions and suggestions for further work.

2 BDI Agent Systems

Whilst systems claiming to be based on agent technology
abound?, there is a growing consensus that an agent sys-
tem should at least possess the properties below:

e pro-activeness: the agent has an agenda to pursue and
will persist in trying to achieve its aims

e reactiveness: the agent will notice and respond to
changes in the environment

e autonomy: the agent will act without necessarily be-
ing instructed to take particular steps

e situated: the agent both influences and is influenced
by the environment around it

Other possible attributes of agent systems include be-
ing social, (i.e. teaming up with other agents in order to
achieve common goals), learning (i.e. taking note of pre-
vious actions and adjusting future actions accordingly),
and rationality, (i.e. working to achieve its aims, and not
working against them).

The BDI framework can be thought of as a technical re-
alisation of the desirable attributes of an agent system, and
their proactive (or goal-directed) nature is one of their key
aspects (especially when compared to more mainstream
computing paradigms). However, of the “B”, “D” and “1”,
in BDI systems, only the beliefs and the intentions have an
explicit representation. Desires (more or less synonymous
with goals) if represented at all, have only a transient rep-
resentation as a type of event. Goals play a central role in
some of the properties of rational systems as described by
BDI theories. However their lack of explicit representa-
tion make it difficult or impossible to realise the theoreti-
cal properties within implemented systems.

Goals are essentially a partial state of the world which
the agent has decided to attempt to achieve. They are
somewhat different to desires in that desires, following
Bratman [Bra87], are unconstrained, may well conflict
with one another and may not even be achievable. Goals
on the other hand represent a certain level of commitment
— the agent has decided to act in such a way as to attempt
to realise its goals.

Rationality seems to require that the set of goals an
agent is pursuing be consistent. A rational agent does
not simultaneously pursue a goal to spend Christmas on
a deserted beach near Broome and to spend Christmas
with relatives in Melbourne. Indeed the formal theoretical
framework of Rao and Georgeff which claims to be a ba-
sis for implemented BDI systems, requires that goals are
consistent for the theory to be valid. However, in order to
ascertain if a new potential goal is in conflict with a goal
one is already pursuing, it is necessary to have some in-
formation about the current goals. This is not available
in current BDI systems such as dMars [AAI96], JACK
[BRHL99, Ltd00], JAM [Hub99], etc. In addition to de-
tection of goal conflict there is a need for some rational
policy to determine which goal will be pursued in case of
conflict.

Another important issue related to representation of
goals is that in many current BDI systems, if it is not possi-
ble to immediately form an intention towards a goal — i.e.
if there is no plan which can be attempted given the cur-
rent state of the world — then the goal is simply dropped.
It certainly seems more reasonable that the agent have the
ability to ‘remember’ a goal, and to form an intention re-
garding how to achieve it when the situation is conducive
to doing so.

Although goals are an integral part of a large body of
theoretical work, there is almost no work that looks in any
detail at the representation of goals or at rational policies
for maintenance of consistency amongst goals. Hindriks

tUnfortunately, buzzword overdoses are all too common.

et al. [HdBvdHMO1] have presented a programming lan-
guage called GOAL (for Goal Oriented Agent Language)
which does incorporate declarative goals and attempts to
bridge the gap between theory and practice. However they
allow inconsistent goals and thus do not address issues of
rational choice between mutually inconsistent goals. Their
goals are more closely related to Bratman’s desires, as in-
fluencers rather than controllers of agent action. Bell and
Huang [BH97] do require that an agent believes each of
its goals to be jointly realisable with all other goals con-
sidered to be more important. They use preferential entail-
ment to formalise the rational revision of goals and goal
hierarchies. Our approach is however more easily inte-
grated into existing implemented systems and is demon-
strably efficient, whereas it is questionable that Bell and
Huang’s approach could be directly implemented in an ef-
ficient manner.

The main technical contribution of this paper is the
definition of a number of ways of maintaining goal consis-
tency and the linking of these to commitment styles, along
with an empirical evaluation of the cost of these mecha-
nisms. A general framework is also presented which al-
lows for additional commitment styles to be defined.

The broader context of this work is the development
of a fine-grained framework for reasoning about various
aspects of agents (including, plans, actions, goals, beliefs,
and intentions) which includes a proof-theoretical com-
ponent (and hence specific rules of inference). This, we
believe, will provide better support for agent systems than
the current BDI framework.

3 Representation

In order to establish whether two goals are consistent we
require some representation of the partial state which will
hold when each goal is achieved, and a mechanism to de-
termine whether there are possible worlds where these two
partial states co-exist. In general we may want to repre-
sent further information about goals (such as beliefs about
their possibility and so forth), but that is beyond the scope
of this paper.

We choose a simple language for expression of par-
tial state in order to facilitate efficient algorithms for con-
sistency checking. The common use of these systems in
real-time environments means that efficiency is vital. Nev-
ertheless we believe that this language is sufficiently ex-
pressive for a number of applications.

Our goals states are conjunctions of basic formulae, as
defined below.

Definition 1 A basic formula is either a propositional let-
ter or its negation (for boolean-valued attributes) or a sim-
ple constraint (for numeric-valued attributes).

A simple constraint is of the form Attribute Relation
Number, where Attribute is (in logical terms) a variable,
Relation is one of =, <, <, >, >, and Number is a real
number.

For example, the three formulae

buy A (Price < 100,000)
buy A—buy A (Price < 100,000)
buy A (Price < 100,000) A (Price > 100,000)

are all goal states (note that the latter two are inconsis-
tent), but the three formulae

Vz buy(z)A (Price > 100,000)
buy A (Price > Reserve)

buy v (Price > Reserve)

are not goal states.

Intuitively, goal states represent conjunctions of sim-
ple state information: a given propositional variable, or
a simple statement about a numeric value (i.e. a mini-
mum or maximum). Note that there are no disjunctions
present, and that the numeric variables are implicitly ex-
istentially quantified, both of which significantly simplify
consistency checking. In addition we do not allow con-
straints of the form z # 2 for similar reasons, as we shall
see below.

Because of the simplicity of this structure, we will of-
ten consider goal states as a set of literals, rather than a
conjunction per se.

Note that there are only two ways in which goal states
G, and G» can be inconsistent:

1. p € G1 and —p € G for some p, or

2. for some attribute common to G; and G5, the union
of the constraints has no solution.

In fact, it is not hard to show the following result.

Proposition 1 Let G be an inconsistent goal state. Then
there exist basic formulae G; and G5 in G such that G,
and G, are inconsistent.

The proof of this property is straightforward and hence
omitted. Note that this property fails in the presence of
constraints such as z # 2. For example, the set of con-
straints x > 2,2 < 2,z # 2 is inconsistent (i.e. has no
solution); however, every pair of constraints in this set is
consistent.

In order to simplify the statement of rules in what
follows, we will assume the existence of a predicate
Consistent(c, 8) which is true precisely when goal states
a and g are consistent. If = Consistent(a,) holds, then
a and g conflict, which we denote by Con(c, 3).

We will assume the existence of a priority function Pr
which indicates the priority of a goal « as a numerical
value. Hence goal « is preferable to goal 3 precisely when
Pr(a) > Pr(B). As a first approximation, it seems reason-
able to require that if a new goal « is more important than
an existing goal g8 with which it conflicts, then 3 should
be aborted and « pursued. Otherwise, (« is less important
or same importance as), « is not adopted. As we shall
see, this is a little too naive in practice, but it is a useful
starting point.

We use predicates Des and Goal in order to state some
constraints on the selection of goals. Des(¢) indicates that
¢ is a desire. Goal(¢) indicates that ¢ has been adopted
as a goal (and hence is required to be consistent with all
other adopted goals).

Following Bratman [Bra87], desires are totally uncon-
strained, and hence may be inconsistent. In contrast, goals
are constrained to be consistent, and in many systems to
satisfy other constraints as well (such as being believed
possible, and not yet being achieved). In this paper we
concentrate on the distinction between desires and goals,
and hence on consistency and priorities. In particular,
goals may be thought of as desires which have passed
through some kind of filter.

Thus we consider a single set of desires, and then we
provide rules which constrain the generation of goals from
this set of desires.

In a real system, the generation of desires (and hence
goals) is dynamic and somewhat unpredictable; changes
in the environment, goal priorities and beliefs about the
possibility or otherwise of achieving a given goal mean
that the set of goals adopted may change over time. Hence
the process of generating goals from desires is not simply
a matter of selecting a fixed set of goals from a fixed set of
desires; the rules for adoption of goals must be capable of
taking into account the current context, such as the current
set of adopted goals.

Hence we first describe a framework in which such
rules about goals can be specified, and then discuss the
precise nature of the rules in detail.

A key aspect of this framework is to determine an or-
dering between goal states, as defined below.

Definition 2 We define Gy > G5 to hold if one of the
following conditions is satisfied:

1. VG € G 3G" € G, such that Pr(G') > Pr(G)
2. G1 DGy

We say that goal state G is preferable to goal state G
if G1 > Ga.

Hence a goal state with a single high priority goal is
preferable to one with a large number of lower priority
goals. Otherwise (i.e. the highest priority goal in each
state is at the same level), preference reverts to set inclu-
sion, so that the goal state with the greater number of goals
is preferred. This is to capture the idea that we always pre-
fer a maximally consistent goal state over a consistent one.

The next step is to determine what rules should apply
to such goal states. The details of the appropriate rules are
discussed in the next section. Note that there are (at least)
two roles that such rules can play: one as a specification
of the adopted goal set, and another as a method of gener-
ating such a set. In this paper, we will only pursue the first
alternative; we will pursue the second (and related issues)
in a subsequent paper.

4 Rules & Commitment

Bratman argues that intentions are attitudes which control,
rather than influence behaviour, whereas desires and Be-
liefs merely influence behaviour. Once a rational agent has
adopted an intention, this intention constrains further rea-
soning and controls agent actions. Intentions imply com-
mitment. Inertia, which according to Bratman is a key
component of intention, allows an agent to focus its rea-
soning and achieve rational behaviour despite computa-
tional limitations. The level of inertia associated with in-
tentions has been described by Rao and Georgeff in terms
of commitment axioms [RG91], which determine when an
agent is allowed to drop its intentions. Rao and Georgeff
define three levels of commitment such that an agent may
drop an intention (i) only when it succeeds, (ii) either
when it succeeds or it is believed impossible, or (iii) when
it succeeds or the Goal no longer exists.

Bratman Identifies two kinds of intention. The first is
a top level intention which often arises from a decision to
pursue a particular desire. This can be likened to a goal in
the BDI theory of Rao and Georgeff. The second is an in-
tention which arises from a step in a partial plan regarding
how to achieve a prior intention. Intentions beyond the top
level are thus closely related to plans. Typically there are
a number of possible plans that could be used to reach a
given goal. Once a plan is chosen, the agent commits to a
number of intentions, that are the steps in the chosen plan.

We now turn to the issue of describing rules for con-
structing goals from desires, and hence are similar in spirit
to the commitment axioms of Rao and Georgeff. As men-
tioned in Section 2, in simplest terms, this may be thought
of as only dropping one goal in favour of another when
the new goal has a higher priority than the original one.
However, as we shall see, there are sometimes situations
in which we need to take into account the details of the
plans involved in achieving two conflicting goals in order
to determine the appropriate course of action (and hence
consideration of the second kind of intention referred to
above).

The basic premise that Goals should not be allowed to
conflict is then represented by the rule:

Ri: Goal(a) A Goal(8) — — Con(a, B)

Similarly, it seems reasonable to require that if there
are two conflicting desires, only the higher priority one is
adopted as a goal, giving:

R2: Des(a) A Des(B) A Con(a,8) A (Pr(a) >
Pr(B)) — Goal(a) A ~Goal(B)

However, this seemingly sensible rule is too naive,
and can lead to inconsistency. For example, the situ-
ation where we have three desires «, 3 and ¢, where
Con(a,B) A Con(B,¢) A ~Con(a,p) N (Pr(a) >
Pr(B) > Pr(¢)). By Ry, comparing a and 8 we will
obtain Goal(a) A —Goal (B). Using the same rule to com-
pare 3 and ¢ we obtain Goal(B3) A =Goal(¢). Combin-
ing these we obtain Goal(3) A =Goal(8) which is clearly
inconsistent. In addition, if we assume that what we intu-
itively want is to adopt « (being the highest priority goal)
and hence disallow Goal(g), then it seems reasonable to
take the view that it is unnecessary to disallow Goal(¢)
due to inconsistency with Goal(g).

In order to address this we say that desires are impeded
when they are disallowed as Goals due to a conflict with a
higher priority desire (which is not impeded):

Conflict(a,) A (Pr(a) > Pr(B)) A
Imp(B)

We can now rewrite Rs as:

—Imp(a) —

Ra2: Des(a) A Des(B8) A =Imp(B) A Con(a,) A
(Pr(a) > Pr(B)) = Goal(a) A — Goal ()

The third rule which seems reasonable is that if there
is no preference ordering between two desires, then we
should prefer a goal that is already adopted over one that
is not:

Rgs: Des(a) A Goal(8) A Con(a, B) A (Pr(a) =
Pr(B)) = -Goal(a)

Rules Ry, R> and R3 thus provide a specification of
how goals can be derived from desires. However, these
rules treat intentions at all levels as equal, and once a plan
has been chosen, there is no reconsideration of that plan
(or the subgoals that result from steps in the plan) unless
a particular subgoal is unable to be adopted or is aborted,
due to a conflict. However, in some situations this ap-
proach may be too naive. For example, if | have a goal to
go to Sydney, and | choose a plan that involves a subgoal
of me driving my car to the airport then this would conflict
with a goal to lend my car to a friend, which is a subgoal
of the top-level goal to be helpful to my friends.

Assuming that the goal of being helpful to my friends
is less important than going to Sydney, we would expect
to adopt the goal of taking my car to the airport in prefer-
ence to lending the car to my friend. However, it may be
possible to find alternative transport to the airport, such as
taking a taxi, which does not conflict with lending my car
to my friend. In such cases it may well be rational for an
agent to engage in limited reconsideration of its plans, and
thus its intentions, due to conflicts with subgoals inherent
in another plan. This does not nullify the powerful con-
trolling effect of intentions, as we are not suggesting that
the agent reasons about all possibilities, but only about al-
ternative means to the most immediate subgoal.

In order to capture this limited reconsideration, which
can be seen as a lesser level of commitment than that de-
fined thus far, we define some new predicates and new
rules governing the adoptions of goals. Plan(P,G) indi-

cates that there is an applicable plan P to achieve Goal G.?

2An applicable planisaplan whichis appropriate in the current context, includ-
ing consideration of both current beliefs and plan failures.

Ex(P) indicates that P is a plan which has been chosen and
is currently being executed. Step(P,S) indicates that S is a
step in plan P. A step, like a goal and a desire, is a partial
state description. A step, like a desire, is a precursor to
a goal. Pref(Sy, S2) indicates that partial state Sy is Pref
over partial state Sy, where S; and S2 may be associated
with desires, goals or steps.

If a step conflicts with some other goal or potential
goal, then it seems reasonable to seek an alternative plan,
if possible, which avoids any such conflicting step. This
preference may be due to the existence of an alternative
plan for the less preferred step, or may be due to some
other reason such as priority. We assume that preference
is only relevant when there is conflict. We incorporate
such considerations in the rules below.

In order to simplify the statement of the rules, we
define the auxiliary relations ExStep and AltPlan as
follows:

Plan(Py,a) N Exz(P)) A Step(a,P,¢) —
Goal(a) A ExStep(a, Py, ¢

Thus ExStep(a, Py, ¢) means that Plan P; is cur-
rently being executed to achieve goal «: and ¢ is a step in
this plan. We also define

(3P : Plan(P,a) A
Step(a, P,y) A Goal(y) —
AltPlan(a, P;)

(P # Pi) AN (Vv
-Con(v,v))) —

Hence AltPlan(a, P;) means that there is an alterna-
tive plan to P; which achieves the same goal as P, but
where none of the steps conflict with current goals.

Next, we need a rule which captures the fact that

if there are two conflicting steps, ¢ and ¢', only one
of which (say ¢) occurs in a plan for which there is a
conflict-free alternative, then we will prefer the other step

(ie. ¢).

R4 EzStep(a,Pi,¢) A Ea:Step(ﬂ,Pz,qﬁ') A
Con(¢,¢) A AltPlan(a, Py) A —AltPlan(8,P,) —

Pref(¢,¢)

We also need a rule that allows us to reconsider our
plan (and thus intentions) when a new desire conflicts
with a step in the plan. This is similar to R4 except that a
desire does not have any possible alternative plan:

Rs: EzStep(a, Py, ¢) A Des(¢) A Con(¢,¢) A
AltPlan(a, P) — Pref(¢ , ¢)

We then need to modify R, and Rj3 so that priority is
only considered when the alternative plan discriminator of
R4 and Ry is not applicable (i.e. both or neither have al-
ternative plans available), and prior commitment (as cap-
tured in R3) is only relevant when neither preference nor
alternative plans apply.

Thus R, becomes:

R,: Des(a) A Des(f) A

(Pr(a) > Pr(B)) A
Goal(a) A —Goal(B)

—Jmp() A Con(a, B) A
-Pref(a,B) A =Pref(8,a) —
And similarly Rz becomes:

R, Des() A Goal(ﬂ) A Con(a,B8) A Pr(a) =
Pr Bg A —=Pref(a,) A —Pref(8,a) = —Goal(a)

Finally, we have a rule that states that our goal
adoption must be consistent with our preferences:

Rg: Pref(S1,52) = Goal(S1) A ~Goal(Ss)

Note that steps in this sense may be thought of as sub-
goals, and vice-versa. In other words, Rg expresses the
identification of steps in a plan with subgoals, once the
subgoals are sufficiently refined. This provides the link-
age between goals and the plans used to achieve them.

Given such rules, it is then straightforward to modify
the preference relation given in Section 2 to reflect this
finer notion of preference. This is done below.

dGl > G, if one of the following conditions is satis-
fied:

1. VG € G5 AG" € Gy such that Pref(G', G)

2. If 1 does not apply, then VG € G, 3G’ € G1 such
that Pr(G") > Pr(QG)

3. Gl 2G2

It is now possible to discuss varying levels of commit-
ment based on the willingness of the agent to reconsider its
intentions. The most committed agent, described by Rao
and Georgeff as blindly committed, remains committed to
its intentions until they succeed. The next level of commit-
ment (single-minded in Rao and Georgeff’s terminology)
requires the agent to remain committed to its intentions
until they either succeed or fail. Rao and Georgeff then
define what they call “open-minded commitment” which
requires an agent to be committed to its intentions until
they succeed or the goal is dropped. However there is no
discussion of when the agent is permitted to drop its goal.

The single-minded commitment can be seen as a spe-
cial case of open-minded commitment, where goals can
be dropped only when they fail. An agent exhibiting this
level of commitment will not consider dropping a goal to
add a conflicting higher priority goal. It will maintain goal
consistency by simply not adding the new higher priority
goal. We would argue that this is the minimal baseline for
rational agents.

The rule set Ry, Ry and R3 can be seen as a fur-
ther special case of open-minded commitment that allows
goals to be dropped if there is a conflicting higher pri-
ority goal. We call this priority-based commitment and
would argue that this (combined with dropping of goals
when they have failed) is normally the minimum level one
would want for a rational agent if priority information is
easily available.

Theruleset Ry, R, Ry, R4, Rs, Rs define a less com-
mitted agent with a more flexible reasoning strategy re-
garding level of commitment. An agent using these rules
is willing to drop a goal if there is an alternative, conflict-
free plan available to achieve the goal which immediately
motivated this goal. We call this alternative-based com-
mitment.

Clearly there are additional strategies that can be de-
fined which progressively weaken the conditions under
which one may drop a goal.

Instead of requiring that there be a conflict-free alter-
native plan, one may want to require only that there is an
alternative plan which conflicts only with lower priority
goals than that involved in the current conflict. Or one
may wish to use strategies which maximise the number of
goals at a given level, thus allowing a goal to be dropped
if it conflicts with a larger number of competing Desires
or steps than its competitors.

Each new commitment strategy would require a set of
rules which provably maintain consistency of the goal set,
and which do not allow for removal of goals other than
according to the desired strategy. In order to recognise
supported models it would be necessary to define the pref-
erence ordering which results from each new strategy.

5 Efficiency evaluation

One of the strengths of BDI-style agent systems is that
they are suitable for real-time applications. Thus it is im-
portant that any additional functionality be evaluated with

respect to efficiency and analysed regarding its impact on
suitability for interactive and real-time applications.

In order to address this question we took an existing
BDI system, JACK? and added mechanisms for maintain-
ing a representation of goals and desires and for detecting
and resolving conflicts. We implemented conflict reso-
lution according to both priority-based commitment and
alternative-based commitment. We then ran a series of ex-
periments to compare the run-time of standard JACK with
our augmented version of JACK.

There are a number of factors which will affect the
length of an execution cycle in the original JACK sys-
tem and in our augmented systems. Initial experimenta-
tion indicated that the two factors affecting the length of
JACK execution cycle were the number of plans matching
a particular trigger, and the number of context conditions
to be evaluated on each matching plan. The number of
context conditions was a much more important factor than
the number of triggered plans.

The major factor influencing the length of the execu-
tion cycle for conflict detection in our augmented system
is the number of potential conflicts — i.e. the number of
times the system must determine whether or not a poten-
tial conflict concerning some attribute, is a conflict or not.
Other factors which also affect the execution cycle are:

1. Depth of the plan hierarchy: the greater the depth,
the more sub-goals there will be at any particular
time, associated with a particular top level goal. This
will require a larger number of consistency checks
for each potential new goal.

2. Number of concurrent top-level goals: the more con-
current top-level goals, the more corresponding sub-
goals and the larger the number of consistency checks
required for each potential new goal.

3. Number of literals in the partial state descriptor for
each goal or sub-goal: a consistency check is done
for each literal on each goal, so this factor increases
the number of consistency checks.

In addition the following factor affects the conflict resolu-
tion phase for the alternative-based commitment:

4. Number of steps in a plan: each step of each alter-
native plan must be checked to ensure that it doesn’t
conflict with existing goals.

For the purpose of this evaluation we took a worst case
and a best case approach for each test situation. The best
case had no potential conflicts and thus never had to enter
the most time consuming part of the conflict detection pro-
cedure. The worst case had a potential conflict with every
current sub-goal, but no actual conflict was found. This
required entering the time consuming constraint solver as
many times as there were current goals or sub-goals. This
can safely be assumed to be totally unrealistic in prac-
tice, but provides an experimental upper bound. The 4
test cases used ranged from a very simple situation with
no real concurrency, to a situation with 20 concurrent top-
level goals, largish plans, and a hierarchy of depth 5. The
results are shown in table 1 and are graphically plotted
against times for the JACK execution cycle at similar lev-
els of system complexity in figure 1. Cycle times were
calculated using the timing to test one potential conflict in
the test situation, multiplied by the number of tests that
would be required, resulting from the various parameters.

As can be seen, the cost of checking for conflict is neg-
ligible if no potential conflicts exist. Predictably, as the
number of potential conflicts increase the time does in-
crease steeply. However we note that the level of conflict
for which these figures are calculated is an extreme upper
bound. Nevertheless, even in the most complex situation,

SJack is available from Agent Oriented Software,
sof tware. com

www. agent -

Test [A]B[C[DTJE PB AB
1 2 T1I1T1T1270235ms|0.27Ims
2 2 31310270585 ms | 0.69Ims
3 2 3[13]20]2]0.945ms | 1.06Ims
4 5710[5]20]2]1.503ms | 1.86I ms
Table 1: Commitment strategy timings
Legend

A - Number of context conditions per plan

B - Number of steps in each plan (i.e. sub goals)

C - Average depth of each plan set

D - Number of top level goals handled concurrently

E - Number of post conditions per goal

PB - Time taken for the new implementation using the
priority-based commitment strategy.

AB - Time taken for the new implementation using the
alternative-based commitment strategy.

—e— current JACK
20— —®m- open minded commitment
—e— flexible commitment

-- - systemwith no conflicting goals /’
/
/
_ //
1.5+ / ’
i / /
/ 7/
/ /
g /o
3T /7
£ 10- et

Figure 1: Comparison of Systems

with 20 concurrent top-level goals, large plans, deep nest-
ing, and all subgoals needing to be tested, it is still possi-
ble to handle a new goal in under 2 milliseconds. Conse-
quently we feel confident that this addition to BDI agent
systems will not be an impediment to their use in real-time
domains. For situations where time is critical, the design
aspects which can help to ensure efficiency are the size of
each plan as measured in number of steps, and the com-
plexity of each goal as measured in the number of literals
describing the partial-state to be achieved. Clearly these
factors are closely linked, as limited goals will result in
shorter plans to achieve them.

6 Conclusions and Further Work

We have seen how an explicit representation of goals can
be used to facilitate specification of conflict detection and
resolution, thus bringing the theory and implementations
of BDI systems closer together. As noted in the previous
section, this does not introduce significant overheads.
Naturally the precise form of the rules used will vary
with the commitment strategy chosen. However, we be-
lieve that the process followed in this paper will be basi-
cally the same whatever commitment strategy is used.

There remains the problem of providing formal rules
which can be used to generate consistent goal sets from
desires, as distinct from specifying such goal sets. These
generative rules exist currently within our implemented
system, in the form of Java code. However formalising
these and proving equivalence to the specification rules
will add another step in the process of closing the gap be-
tween theory and practice.

Our broader goal is to develop a framework for ra-
tional agents, based on our experiences with the logic of
Rao and Georgeff and BDI implementations such as JACK
and dMars, in which the theory and implementation are
more closely aligned. The explicit representation of goals
is thus one step towards such a framework, which will
also provide more detailed reasoning about the relation-
ships between beliefs, desires, goals, intentions, actions
and plans.

References

[AAI96] AAIl. dMARS Technical Overview. The
dMARS V1.6.11 System Overview, 1996.

[BH97] J. Bell and Z. Huang. Dynamic goal
hierarchies. In L. Cavedon, A. Rao,
and W. Wobcke, editors, Intelligent Agent
Systems: Theoretical and Practical Is-
sues, pages 88-103, 1997.

[Bra87] M. E. Bratman. Intentions, Plans, and
Practical Reason. Harvard University
Press, Cambridge, MA, 1987.

[BRHL99] Paolo Busetta, Ralph Ronnquist, Andrew

Hodgson, and Andrew Lucas. Jack intel-
ligent agents - components for intelligent
agents in java. AgentLink News, Issue 2,
January 1999.

[HdBvdHMO01] K.V. Hindriks, F.S. de Boer, W. van der
Hoek, and J.-J.Ch. Meyer. Agent pro-
gramming with declarative goals. In
Intelligent Agents VI - Proceedings of
the 7th International Workshop on Agent
Theories, Architectures, and Languages
(ATAL’2000), Berlin, 2001. Springer Ver-
lag.

Marcus J. Huber. Jam: A BDI-theoretic
mobile agent architecture. In Proceed-
ings of the Third International Confer-
ence on Autonomous Agents (Agents’99),
pages 236-243, Seattle, WA, May 1999.

N. R. Jennings. An agent-based approach
for building complex software systems.
Communications of the ACM, 44(4):35-
41, 2001.

N.R. Jennings and M.J. Wooldridge. Ap-
plications of intelligent agents. In
Nicholas R. Jennings and Michael J.
Wooldridge, editors, Agent Technology:
Foundations, Applications, and Markets,
chapter 1, pages 3-28. Springer, 1998.

Agent Oriented Software (AOS) Pty Ltd.
JACK Intelligent Agents, User Guide.
AOS Pty Ltd, Carlton, Victoria, 3053,
2000.

Anand S. Rao and Michael P. Georgeff.
Modelling rational agents within a BDI-
Architecture. In R. Fikes and E. Sande-
wall, editors, Proceedings of the Second
International Conference on Principles

[Hub99]

[Jen01]

[IW98]

[Ltd00]

[RGO1]

[RG92]

of Knowledge Representation and Rea-
soning, KR 91, pages 473-484, Cam-
bridge, MA, 1991.

Anand S. Rao and Michael P. Georgeff.
An abstract architecture for rational
agents. In C. Rich, W. Startout, and
B. Nebel, editors, Proceedings of the
third International Conference on Prin-
ciples of Knowledge Representation and
Reasoning, KR ’92, pages 439-449,
Boston, MA, 1992.

