
Model Based Testing for Agent Systems

Zhiyong Zhang, John Thangarajah, and Lin Padgham

School of Computer Science, RMIT, Melbourne, Australia
{zhzhang,johthan,linpa}@cs.rmit.edu.au

Abstract. Although agent technology is gaining world wide popularity, a hin-
drance to its uptake is the lack of proper testing mechanisms for agent based
systems. While many traditional software testing methods can be generalized to
agent systems, there are many aspects that are different and which require an un-
derstanding of the underlying agent paradigm. In this paper we present certain
aspects of a testing framework that we have developed for agent based systems.
The testing framework is a model based approach using the design models of the
Prometheus agent development methodology. In this paper we focus on model
based unit testing and identify the appropriate units, present mechanisms for gen-
erating suitable test cases and for determining the order in which the units are
to be tested, present a brief overview of the unit testing process and an example.
Although we use the design artefacts from Prometheus the approach is suitable
for any plan and event based agent system.

1 Introduction

Agent systems are increasingly popular for building complex applications that operate
in dynamic domains, often distributed over multiple sites. While the dream of theory
based verification is appealing, the reality is that these systems are reliant on traditional
software testing to ensure that they function as intended. While many principles can be
generalised from testing of object oriented systems [1], there are also aspects which are
clearly different and that require knowledge of the underlying agent paradigm.

For example in many agent systems paradigms (including BDI - Belief, Desire, In-
tention [2]) there is a concept of an event which triggers selection of one of some num-
ber of identified plans, depending on the situation. If one of these plans is actually never
used, then this is likely to indicate an error. The concepts of event and plan, and the re-
lationships between them are part of typical agent designs, and can thus be used for
model based testing of agent systems. Effective testing of an agent system needs to take
account of these kinds of relationships.

In this paper, we describe some of the aspects of a framework we have developed to
automatically generate unit test cases for an agent system, based on the design models.
The testing framework includes components that generate the order in which the units
are to be tested, generate inputs for creating test cases, automate the test case execution,
augment the system code to enable the testing to be performed, and a test agent that
activates the testing process, gathers the results and generates a report that is easily
understood.

J. Filipe et al. (Eds.): ICSOFT/ENASE 2007, CCIS 22, pp. 399–413, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

400 Z. Zhang, J. Thangarajah, and L. Padgham

We base our approach on the notion of model based testing ([3,4]) which proposes
that testing be in some way based on design models of the system. There are a num-
ber of agent system development methodologies, such as Tropos [5], Prometheus [6],
MASE [7] and others, which have well developed structured models that are potentially
suitable as a basis for model based testing. In our work we use the Prometheus models.
The models that are developed during design provide information against which the
implemented system can be tested, and also provide an indication of the kind of faults
that one might discover as part of a testing process.

There has been some work by others on testing agent systems in recent years. How-
ever, they have either focused on testing for the properties of abstract BDI-agents [8],
or performed black box testing of the system [9].

In this paper, we focus on unit testing the components of a single agent. Unlike
more traditional software systems, such as those based on Object-Oriented principles,
where the base units are classes that are called via method invocation, the units in agent
systems are more complex in the way they are called and are executed. For instance,
plans are triggered by events, an event may be handled by more than one plan, plans
may generate events that trigger other plans either in sequence or in parallel and so on.
A testing framework for agent based systems must take these details into consideration
in identifying the appropriate units and developing appropriate test cases.

In the sections ahead, we first identify what the natural units for an agent based sys-
tem are, and how we use the model to determine the various test cases and their expected
outcomes. We then provide an overview of the testing process and provide details on
the reasoning that is done regarding dependencies between units, the necessary ordering
of test cases, and the way in which inputs are generated for the various test cases. We
provide a brief example from the evaluation with a case study, and then conclude with
a discussion that identifies related and future work.

2 Test Units

The type of testing that we perform is fault-directed testing, where we intend to reveal
faults in the implementation through failures [1, p.65]. This is in contrast to conformance-
based testing, which tests whether the system meets the business requirements1.

In order to perform fault-directed testing we require knowledge about the failures
that can occur within the design paradigm (often called the fault model). In this section,
we identify the units to be tested and identify possible points of failure for each unit that
are independent of the implementation. We begin by examining the Prometheus design
artefacts to identify suitable units for testing. Figure 1 outlines the components of an
agent within the Prometheus methodology2. An agent may consist of plans, events and
belief-sets, some of which may be encapsulated into capabilities. Percepts and incoming
messages are inputs to the agent, while actions and outgoing messages are outputs from
the agent.

1 We expect to eventually also add conformance based testing, using use cases and other artefacts
from the models developed at the requirements analysis stage, rather than the detailed design
models being used here.

2 Other agent oriented methodologies use similar constructs.

Model Based Testing for Agent Systems 401

Action

Percept

Belief−set Plan Event

Plan EventBelief−set

Capability

Message

Agent

Fig. 1. Agent Component Hierarchy in Prometheus

Beliefsets are essentially the agent’s knowledge about the environment and there-
fore constitute the situations in which testing must be done. The basic units of testing
then are the plans and the events. Percepts and messages are also treated as events in
agent development tools like JACK [10] and similar systems, and we also use this same
generalisation.

We now discuss informally appropriate fault models for testing plans and events.

2.1 Testing Plans

A plan in its simplest form consists of a triggering event, a context condition, which
determines the applicability of the plan with respect to the agent’s beliefs about the
current state of the world, and a plan body which outlines a sequence of steps. These
steps may be subtasks, activated by posting events that are handled by the agent itself
or external message events, which will be handled by another agent.

When we consider a plan as a single unit we test for the following aspects:

• Does the plan get triggered by the event that it is supposed to handle?
If it does not, then there could be two possible reasons. The first is that some other
plan always handles it, and the other is that there could be an inconsistency between
the design and code and no plan actually handles that particular event3.

• Is the context condition valid?
The context condition for a plan is optional. The absence of a context condition de-
notes that the plan is always applicable. However, if the designer includes a context
condition, then it should evaluate to true in at least one situation and not in all.

• Does the plan post the events that it should?
Events are posted from a plan to initiate sub-tasks or send messages. If some ex-
pected events are never posted, we need to identify them as this may be an error.

• Does the plan complete?
While it is difficult to determine whether a plan completes successfully or not, we
can at least determine whether the plan executed to completion. If the plan does
not complete then there is an error4. In implementation systems like JACK[10], for

3 Here we can only check if the design matches the code, and can not check, for example, if the
plan handling a particular event is correct or sensible.

4 When deployed, a plan may well fail due to some change in the environment after the time it
was selected. However, in the controlled testing situation where there are no external changes,
then a plan that does not complete properly (due to failure at some step) should not have been
selected.

402 Z. Zhang, J. Thangarajah, and L. Padgham

example, when a plan completes successfully a success method is invoked, or a
failure method if the plan fails. We use these methods to recognize when a plan
completes. A time-out mechanism is used to detect when a plan does not complete.

2.2 Testing Plan Cycles

In Section 4 we show the order in which the plans should be tested due to the dependencies
in the plan structure. For example, in Figure 2 the success of plan P0 depends on the
success of either plan P2 or plan P3. These dependencies may on some occasions be
cyclic. For example, there is a cyclic dependency between plans P0, P2 and P1. In this
special case we cannot test each plan individually as they are dependent on each other.
Hence, such plans are considered as a single unit which we shall term cyclic plans.

P1

P0

P3P2

e0

e3

e1

e0

Fig. 2. Plan Dependencies

Each plan in the cycle is tested for the aspects discussed above, and in addition the
following aspects are tested with respect to the cycle that they form:

• Does the cycle exist at run-time?
If the cycle never occurs at run-time then the developer of the system should be
notified, as the cycle may have been a deliberate design decision5.

• Does the cycle terminate?
Using a pre-defined maximum limit for the number of iterations in the cycle, we
can determine if the cycle exceeds that limit and warn the user if it does.

2.3 Testing Events

An event as we generalized previously is either a percept, a message, or an event within
the agent. The purpose of the event is to trigger the activation of a plan. Each event unit
is tested for the following:

• Is the event handled by some plan?
If the event does not trigger a plan, it could be due to two reasons. The first is if
there is no plan that handles that particular event (which is easily checked by the
compiler). The second is if the context conditions of all the plans that handle the
event are false. This is a test for coverage.

• Is there more than one plan applicable for the event?
If at design time the developer has indicated that only one plan is expected to be
applicable, then the existence of multiple applicable plans for a given situation
(referred to as overlap) is an error.

5 Alternatively the cycle can be detected at design time and the developer asked whether it is
expected to occur at runtime. This information can then be used in testing.

Model Based Testing for Agent Systems 403

Mistakes in specification of context conditions in plans, leading to unexpected lack
of coverage, or unexpected overlap, are common causes of error in agent programming.
Consequently it is a good idea to warn the user if this occurs (though they can also
specify that it is expected in which case no warning need be generated).

3 Testing Process: Overview

The unit testing process consists of the following steps:

• Determination of the order in which the units are to be tested.
• Development of test cases with suitable input value combinations.
• Augmentation of the code of the system under test with special testing code to

facilitate the testing process.
• Testing, gathering of results, analysis and generation of an appropriate test report.

All of the above steps are automated and can be performed on a partial implementa-
tion of the system if needed. This supports the test as you go approach of unit testing.

In this section we briefly discuss the process of testing each type of unit. In the sec-
tions to follow we present the method for determining the order in which the units are to
be tested and a mechanism for generating practically feasible input combinations for the
test cases for each unit. Due to space limitation we do not discuss the implementation
of augmenting the code of the system under test or the process of the report generation.

3.1 The Testing Framework

Figure 3 shows an abstract view of the testing framework for a plan unit. It has two
distinct components, the test-driver and the subsystem under test. The test-driver com-
ponent contains the test-agent, testing specific message-events that are sent to and from
the test-agent, and a plan (test-driver plan) that initiates the testing process. This plan
is embedded into the subsystem under test as part of the code augmenting process. The
subsystem under test is the portion of the system that is needed for testing of the relevant
unit and includes the necessary data and beliefsets, the supporting hierarchy of the key
plans and the key units. The supporting hierarchy of a key plan is the events and plans
on which it is dependent for full execution. For testing a plan, the key units are the plan
itself, and its triggering event. For testing an event the key units are the event and all
plans for which that event is a trigger. For testing a plan cycle the key units are all plans
in the cycle and their triggering events.

Figure 3 illustrates the steps in the testing process for a plan: the test-agent generates
the test cases, and runs each test case by sending an activation message to the test-
driver plan; the test-driver plan sets up the input and activates the subsystem under test
that executes and sends information (via specially inserted code) back to the test-agent;
when testing is complete the test-agent generates a report which addresses the questions
we have discussed related to each unit in section 2.

Figure 4 shows a similar process for an event, testing for coverage and overlap.
Plans that form a cyclic dependency (a cyclic plan set) need to be tested together. In

addition to testing each plan in the set, in the same way as a single plan, the specific

404 Z. Zhang, J. Thangarajah, and L. Padgham

Event_1

Plan_1

Results_Message

Finished_Message

Activation_Message

Test−Agent

Test−Driver plan

sends

posts

sends
sends

Test driver part

sends

Subsystem under test

Fig. 3. Abstract Testing Framework for a Plan

Finished_Message

Event_1

Test−Agent

Activation_Message

Results_Message

Plan_2

Plan_3

Plan_1

Test−Driver plan

Test driver part

posts

sends

sends sends
sends

sends

sends

Subsystem under test

Fig. 4. Abstract Testing Framework for an Event

Results_Message

Finished_Message

Activation_Message

Event_2

Plan_1

Event_1

Plan_3

Event_3

Plan_2
Test−Agent

Test−Driver plan

sends

Test driver part

sends

sends

sends

posts

posts

posts
posts

sends

sends

Subsystem under test

Fig. 5. Abstract Testing Framework for Cyclic Plans

questions about the cyclic dependency need to be assessed: does the cycle occur at run-
time? does the cycle terminate? Figure 5 shows the test-driver activating just one plan
of the cycle (Plan 1), this however must be done in turn for each plan of the cycle.

3.2 Automated Code Augmentation

In order to execute the various test cases generated, the code of the system under test
is augmented to include special code for testing purposes. This augmentation is au-
tomated. The first step in the process is to copy the original source code into testing
directories. There is a separate directory for each test case as the code modifications
depends on the test case. Into each test system the test driver component (see figure 3)
is added and testing specific code is inserted into the code of the key units (discussed
above). These augmented test systems are then compiled so that the test cases maybe
executed.

Model Based Testing for Agent Systems 405

package conference_travel;
/** BEGIN - import statements for testing
import au.edu.rmit.cs.prometheus.test.*;
import tm_agent.*;
/** END - import statements for testing
import conference.bookings.*;

public agent Book_Conference_Agent extends Agent {
/**BEGIN Test Code - add the capability for testing*/
#has capability cap_AUT_Testing cap_aut_test;
/**END Test Code - add the capability for testing*/
#has capability Transport cap;
#posts event Lookfor_Transport m_ev_trans;

public Book_Conference_Agent(String name) { super(name); }
public void lookforTransport(Long nBudget) {.....}
......
/*************** BEGIN Test Code - Recording methods *******************/
/* BIT code: this method informs the TM_Agent the CC value of the Plan

* pName. It is invoked in two places: 1.the beginning of "body()" method
* 2. BIT_Start_Plan */
public boolean BIT_record_CCResult(PlanTestParams p,String pName,

boolean ccVal){...}
/* BIT code: this method informs the TM_Agent about the message received

* by the PUT. It is invoked in the "context()" method of PUT */
public boolean BIT_record_PlanReceivedMsg(PlanTestParams params,

String strPlanName){...}
/* BIT code: this method informs the TM_Agent when messages are sent out

* by the PUT. It is invoked before the "@post/@send/@subtask" calls in
* the body of the PUT */
public boolean BIT_record_MsgOut(PlanTestParams params, Event outEvent,

String strPlanName, int sendType) {...}
....

/*************** END Test Code - Recording methods *******************/

Fig. 6. Example of an Augmented code for an Agent

....

#reasoning method body()
{

/** BEGIN Test Code - report the true CC value to the TM_Agent*/
m_in_agency.BIT_getPlanTestParams().setActuallyTriggeredPlanName(

BIT_getCurrPlanName());
bit_self.BIT_record_CCResult(m_in_agency.BIT_getPlanTestParams(),

BIT_getCurrPlanName(), true);
/** END Test Code - report the true CC value to the TM_Agent*/
....

Fig. 7. Example of an Augmented code for a Plan body

For example, Figure 6 shows an example of the code of an agent from a confer-
ence travel booking system implemented in JACK [10], where the agent under test is
the Book Conference Agent. The code of that agent is modified to include: the relevant
packages for testing (via import statements), the testing capability, and reasoning meth-
ods required to record various aspects of testing such as the messages received and sent
out by its plans when they are tested. Figure 7 shows an example of a plan under test
that is modified to include, among others, code at the start of the plan body to record
the success of the context condition of that plan and that is has begun execution.

406 Z. Zhang, J. Thangarajah, and L. Padgham

P1

P3

P5
P0

e0

P6

e6

e2e2

e4

e4

e5

e1
P41

P42

e1

e3

e3

e7

P7

P2

Fig. 8. Testing order

PROCEDURE getOrder(PlanNode N)
IF tested(N) THEN

terminate the procedure
stack.push(N) // Store the current path explored
FOR EACH child Ni of N

IF Ni is the ancestor of any Plan in the stack
THEN testqueue.add(CT(Ni, . . . , N))

ELSE getOrder(Ni)
FOR EACH child-set N(Ni, Nj , . . .) that share
the same trigger e

testqueue.add(ET(e))
testqueue.add(PT(N))
stack.pop(N)

END PROCEDURE

Fig. 9. Testing order: Algorithm

4 The Order of Testing

Recall that an event may be handled by one or more plans and each plan may post
sub-tasks. The success of the top level plans is partly dependent on the success of the
plans triggered by the sub-tasks (if any). The order of testing is, therefore, bottom-up
where we test a unit before we test any other unit that depends on it. For example,
from Figure 8 we test plan P7 before we test plan P0. The complicating factor is the
presence of cyclic dependencies. Plans that form cyclic dependencies are to be tested
together as a single unit as previously described.

In order to determine the order of testing we apply the following steps. We use
Figure 8 as an example design and abbreviate the following: Plan Test - PT; Event
Test - ET; Cyclic Plans Test - CT.

1. We perform a modified depth-first search outlined in Figure 9, which performs a
typical depth-first search but also identifies cyclic dependencies as well as plans that
share the same trigger event (for testing coverage and overlap). The order returned
by this algorithm for our example is: PT(P5), CT(P3, P1, P2), PT(P41), PT(P42),
ET(e4), PT(P3), CT(P6, P3, P1, P2), PT(P6), PT(P2), PT(P1), PT(P7), PT(P0).

2. From the above order, we can eliminate all unit test of plans that are part of any
cyclic dependency as they will be tested when the cyclic plans are tested. The re-
sulting ordered set is: PT(P5), CT(P3, P1, P2), PT(P41), PT(P42), ET(e4), CT(P6,
P3, P1, P2), PT(P7), PT(P0).

Model Based Testing for Agent Systems 407

3. In the order above the cyclic plans are not in the correct order as they must be tested
only when all of its plans’ children have been tested. For instance P41 is a child
of P3. This re-ordering is a trivial operation and when complete reveals: PT(P5),
PT(P41), PT(P42), ET(e4), CT(P3, P1, P2), CT(P6, P3, P1, P2), PT(P7), PT(P0).

4. The final step is to combine cyclic dependencies that overlap. By overlap we mean
cycles that have at least one plan in common. In our example one cycle is a sub-
set of the other hence when merged the resulting final order of testing is: PT(P5),
PT(P41), PT(P42), ET(e4), CT(P6, P3, P1, P2), PT(P7), PT(P0).

5 Test Case Input Generation

The variables that we consider as test parameters are those within the context conditions
or body6 of the plans to be tested and the variables of the entry-event. The entry-event is
the initial trigger event when testing a plan, or is the event itself when testing an event.
The variables within the event may be used within the plan body. We need to generate
practical combinations of these variables to adequately test the plans and events.

There are 3 steps in generating value combinations that form different test cases:

1. Variable extraction from the design documents.
2. Generation of Equivalence Classes, which is a heuristic for reducing the size of

the input range. While the concept of Equivalence Classes is not novel, we have
adopted our own techniques in applying the heuristic.

3. Generating the input combinations from the equivalence classes using a heuristic
to reduce the number of different combinations.

5.1 Extraction of Variables

The detailed description of plans and events in our design documents contains a list
of variables and their types. For variables in context conditions we also have a list of
conditions that must be satisfied for the context condition to return True. We call values
that satisfy these conditions valid variables for the context condition. Following are
some examples of such variables and their associated conditions.

stock, int, ≥ 0; ≤ 200;
price, float, >0.0;
bookName, string, !=null;
supplier, SupplierT ype, == “Amazon′′, == “Powells′′

In our testing framework we define four basic variable types: integer, float, string and
enumerated. Other types are considered as special cases of these four basic ones. For
example, boolean is considered as a special case of enumerated, and double is a spe-
cial case of float. The definition of the enumerated types must be contained within the
design. For example, the enumerated type SupplierType may be defined as:

[EnumType, SupplierT ype, {“Amazon”,
“Angus&Robertson”, “Powells”, “Dymocks”}].

6 We have not yet implemented the use of variables in the body other than those in the context
condition and the event. However the information is available from the design and follows the
same principles.

408 Z. Zhang, J. Thangarajah, and L. Padgham

5.2 The Generation of ECs

It is not possible to create test cases for every valid value of a variable since some
domains are infinite, such as (0.0,+∞) Additionally we wish to test with some invalid
values. Even for non-infinite domains the number of test values may be extremely large.
To address this issue we use the approach of equivalence partitioning [11, p.67] to
obtain a set of representative values. An Equivalence Class (EC) [1, p.401] is a set
of input values such that if any value is processed correctly (or incorrectly), then it is
assumed that all other values will be processed correctly (or incorrectly). We consider
the open intervals and the boundary values of the variable domains to generate ECs, as
the former gives equivalent valid values and the latter are edge values that should be
checked carefully during testing. We also consider some invalid values.

An EC that we define has five fields:

1. var-name: The name of the variable.
2. Index: A unique identifier.
3. domain: An open interval or a concrete value.
4. validity: Whether the domain is valid or invalid.
5. sample: A sample value from the domain: if the domain is an open interval (e.g.

(0.0, +∞)), it is a random value of this interval (e.g 778); if the domain is a concrete
value (x=3), it is this value.

Table 1 gives the equivalence classes for the example variables above.
When generating the ECs for a particular variable we use the following rules (we

refer to Table 1):

• One EC is generated for each boundary value of the variable. The sample value of
that EC is the boundary value. E.g., for variable ‘stock’, EC-2 and EC-4 are created
using the boundary values.

• For an integer or float variable, one EC is generated for each open interval be-
tween two neighbouring boundary values. The sample value is a random value in
this interval. E.g., for variable ‘stock’, EC-1 EC-3, and EC-5 are generated using
boundary value intervals.

• For a string variable, one EC is generated to represent the domain of valid values.
The sample value is a random string that is not a valid value. E.g., for variable
‘bookName’ EC-2 is such an EC.

• For an string variable, one EC is generated to accommodate the NULL value.
• For an enumerated variable, one EC is generated for each value of the enumerated

type.

The generated ECs for the sample variables given above are displayed in Table 1.

5.3 Reducing the Size of the Test Set

It is straightforward to generate the set of all possible combinations of variable ECs,
which could then be used for the value combinations for test cases. However the number
of the combinations may still be quite large. In our example, there are 120 combinations
of all the variables. This number can be reduced further by using the approach of com-
binatorial design [12]. This approach generates a new set of value combinations that

Model Based Testing for Agent Systems 409

Table 1. ECs of all variables

variable index domain valid sample
stock EC-1 (-∞, 0) no -823

EC-2 0 yes 0
EC-3 (0.0, 200) yes 139
EC-4 200 yes 200
EC-5 (200, +∞) no 778

price EC-1 (-∞, 0.0) no -341.0
EC-2 0.0 yes 0.0
EC-3 (0.0, +∞) yes 205.0

book EC-1 NULL no NULL
Name EC-2 not NULL yes “random”

supplier EC-1 “Amazon” yes “Amazon”
EC-2 “Angus& yes “Angus&

Robertson” Robertson”
EC-3 “Powells” yes “Powells”
EC-4 “Dymocks” yes “Dymocks”

Table 2. List of EC value combinations

index stock price bookName supplier
1 139 205.0 “random” “Amazon”
2 200 205.0 “random” “Amazon”
...
23 139 205.0 NULL “Powells”
24 200 205.0 “random” “Powells”

cover all n-wise (n≥2) interactions among the test parameters and their values in order
to reduce the size of the input data set. Hartman and Raskin have developed a software
library called CTS (Combinational Testing Service)7 which implements this approach.
We do not expand on these techniques as we do not modify them by any means. Using
this software we are able to reduce the set of 120 combinations to a smaller set of 24
combinations. We then use the sample value from each EC to obtain the concrete test
data for each test case that will be run. Table 2 shows some sample value combinations
from the reduced list, where each combination represents the input to a unique test case.
Whether or not this method is used can be determined depending on the number of total
combinations. It is also possible to differentiate between valid and invalid data, reduc-
ing the number of combinations for invalid data, while using all possibilities for valid
data to ensure that all options through the code are exercised.

6 Case Study

As a first step in evaluating our testing framework we took a sample agent system,
systematically introduced all types of faults discussed in section 2 into the system and
used it as input to the testing framework. The testing framework successfully uncovered
each of these faults in the automated testing process.

7 http://www.alphaworks.ibm.com/tech/cts

410 Z. Zhang, J. Thangarajah, and L. Padgham

Table 3. ECs of all variables

variable index domain valid sample
BookID EC-1 (0, +∞) yes 11

EC-2 (-∞, 0) no -2
EC-3 0 yes 0

Number EC-1 (0, +∞) yes 8
Ordered EC-2 (-∞, 0) no -9

EC-3 0 no 0
Urgent EC-1 yes yes yes

EC-2 no yes no

The sample system that we used, was the Electronic Bookstore system as described in
[6]. This is an agent-based system dealing with online book trading, containing agents
such as Customer Relations, Delivery Manager, Sales Assistant and Stock Manager
agents. We used the Stock Manager agent as the agent under test (AUT), and specifi-
cally edited the code to introduce all identified types of faults. The testing framework
generator automatically generated the testing framework for the testable units of the
Stock Manager agent, and then executed the testing process for each unit following the
sequence determined by the testing-order algorithm. For each unit, the testing frame-
work ran one test suite, which was composed of a set of test cases, with each case having
as input one of the value combinations determined.

For example, as discussed earlier, one kind of fault that can occur is that a particular
subtask is never posted from a plan, despite the fact that the design indicates it should
be. In the Stock Manager the plan Out of stock response had code that, when the book is
needed urgently and the number of ordered books is less than 100, checks if the default
supplier currently has stock and if not posts the subtask Decide supplier. We modified
the body of the code for Out of stock response so that a condition check would always
be false, thus leading to the situation that the Decide supplier subtask event would in
fact never be posted.

The plan Out of stock response had as its trigger event No stock which included the
boolean variable Urgent. The context condition of this plan was:

(BookID ≥ 0 AND NumberOrdered > 0).

Within the body of the plan we had the code :

IF Urgent=YES AND NumberOrdered < 100
THEN postEvent(Decide supplier)
ENDIF

To introduce the fault into the system we modified the IF condition above to be :

IF Urgent=YES AND NumberOrdered < 0

which will of course result in Decide supplier never being posted. The input argu-
ments for the test are then BookID, NumberOrdered and Urgent, with the following
specifications:

BookID, int, ≥ 0
NumberOrdered, int, > 0
Urgent, boolean

Model Based Testing for Agent Systems 411

Table 4. List of Equivalence Class combinations

index BookID Number Urgent Validity
Ordered

1 EC-1 (11) EC-1 (8) EC-1 (yes) valid
2 EC-3 (0) EC-1 (8) EC-1 (yes)
3 EC-1 (11) EC-1 (8) EC-2 (no)
4 EC-3 (0) EC-1 (8) EC-2 (no)
5 EC-1 (11) EC-2 (-9) EC-1 (yes) invalid
6 EC-1 (11) EC-2 (-9) EC-2 (no)
7 EC-1 (11) EC-3 (0) EC-1 (yes)
8 EC-1 (11) EC-3 (0) EC-2 (no)
9 EC-2 (-2) EC-1 (8) EC-1 (yes)
10 EC-2 (-2) EC-1 (8) EC-2 (no)
11 EC-2 (-2) EC-2 (-9) EC-1 (yes)
12 EC-2 (-2) EC-2 (-9) EC-2 (no)
13 EC-2 (-2) EC-3 (0) EC-1 (yes)
14 EC-2 (-2) EC-3 (0) EC-2 (no)
15 EC-3 (0) EC-2 (-9) EC-1 (yes)
16 EC-3 (0) EC-2 (-9) EC-2 (no)
17 EC-3 (0) EC-3 (0) EC-1 (yes)
18 EC-3 (0) EC-3 (0) EC-2 (no)

This gives the equivalence classes as shown in table 3, giving 18 possible combinations
of values shown in table 4, which is reduced to 9 if the combinatorial testing reduction
is used.

This error was discovered by the testing system by analysing the results of the test
suite and observing that Decide supplier was never posted. The following is an example
of the warning message that is supplied to the user:

Type of Fault: Subtask never posted
WARNING: The event Decide supplier is never posted in any test case. Value combinations used
in test suite were:8

BookID=11 NumberOrdered=8 Urgent=yes
BookID=0 NumberOrdered=8 Urgent=yes
BookID=11 NumberOrdered=8 Urgent=no
BookID=0 NumberOrdered=8 Urgent=no

If some other value combination would result in posting of event Decide supplier, please provide
these values to the testing system.

7 Discussion

The need for software testing is well known and accepted. While there are many soft-
ware testing frameworks for traditional systems like Object-Oriented software systems,
there is little work on testing Agent-Oriented systems. In particular to the best of
our knowledge there is no testing framework that is integrated into the development
methodology.

8 Only valid values are provided as invalid values would not cause the plan to run and are hence
irrelevant for this error.

412 Z. Zhang, J. Thangarajah, and L. Padgham

In this paper we present part of a framework for testing agent systems that we have
developed, which performs model based unit testing. We have identified as units, plans,
events that are handled by multiple plans, and plans that form cyclic dependencies. We
have presented an overview of the testing process and mechanisms for identifying the
order in which the units are to be tested and for generating the input that forms test
cases.

There has been some work on testing agent based systems in recent years (e.g [8,9]).
The former provides an approach to compare the properties of the agent and the observ-
able behaviours with the specification of the system, by building a behavioral model for
the system using extended state machines. The latter studied how to build a state-based
model for an agent-based system using extended Statecharts, and then proposed an ap-
proach to generate test sequences. Both of the above work is based on conformance
testing, which tests if the system meets the business requirements and are restricted to
black-box testing. In contrast to these approaches, our work looks at fault directed test-
ing which tests the internal processes of the system and not the business requirements.
Our approach is also integrated with the design methodology and supports testing at
early stages of development.

There are other work on multi-agent testing that defines agents as test units (e.g
[13,14]). We however, explore the internals of an agent and choose plans and events as
test units.

While we obtain and use more structural information than standard black box testing,
we are limited in the information we use as we obtain this information from the design.
Hence, implementation specific structure is not considered. The testing framework is
also reliant on the implementation following the design specification.

Although we have completed the implementation of the testing framework using
JACK Intelligent Systems [10], and done some preliminary evaluation as discussed in
the previous section, further evaluation is required. For this purpose we intend to use
programs developed by post-graduate students as part of an agent programming course.

In this work we have only addressed unit testing, in future work we will extend this
work to include integration testing. To this end, we expect to build on existing work
(e.g. [15,16]). The former described a debugger which, similar to this work, used design
artefacts of the Prometheus methodology to provide debugging information at run-time.
Their approach of converting protocol specifications to petri-net representations is of
particular relevance to our future work on integration testing. The latter presented a unit
testing approach for multi-agent systems based on the use of Mock-Agents, where each
Mock-Agent tests a single role of an agent under various scenarios.

As future work we also look to embed the testing functionality into the Prometheus
Design Tool (PDT) [17]. PDT is a tool for developing agent systems following the
Prometheus methodology, and includes automated code generation which we hope to
extend to generate testing specific code.

Acknowledgements. We would like to acknowledge the support of the Australian Re-
search Council and Agent Oriented Software, under grant LP0453486.

Model Based Testing for Agent Systems 413

References

1. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley Longman Publishing Co., Inc., Boston (1999)

2. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Lesser, V. (ed.) The
First International Conference on Multi-Agent Systems, San Francisco, pp. 312–319 (1995)

3. Apfelbaum, L., Doyle, J.: Model Based Testing. In: The 10th International Software Quality
Week Conference, CA, USA (1997)

4. El-Far, I.K., Whittaker, J.A.: Model-Based Software Testing. In: Encyclopedia of Software
Engineering, pp. 825–837. Wiley, Chichester (2001)

5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8, 203–236 (2004)

6. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A practical guide. Wiley
Series in Agent Technology. John Wiley and Sons, Chichester (2004)

7. DeLoach, S.A.: Analysis and design using MaSE and agentTool. In: Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001) (2001)

8. Zheng, M., Alagar, V.S.: Conformance Testing of BDI Properties in Agent-based Soft-
ware Systems. In: APSEC 2005: Proceedings of the 12th Asia-Pacific Software Engineering
Conference (APSEC 2005), Washington, pp. 457–464. IEEE Computer Society Press, Los
Alamitos (2005)

9. Seo, H.S., Araragi, T., Kwon, Y.R.: Modeling and Testing Agent Systems Based on State-
charts. In: Núñez, M., Maamar, Z., Pelayo, F.L., Pousttchi, K., Rubio, F. (eds.) FORTE 2004.
LNCS, vol. 3236, pp. 308–321. Springer, Heidelberg (2004)

10. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents - Components
for Intelligent Agents in Java. Technical report, Agent Oriented Software Pty. Ltd., Mel-
bourne, Australia (1999)

11. Patton, R.: Software Testing, 2nd edn. Sams, Indianapolis (2005)
12. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: An Approach to

Testing Based on Combinatiorial Design. Software Engineering 23, 437–444 (1997)
13. Caire, G., Cossentino, M., Negri, A., Poggi, A., Turci, P.: Multi-Agent Systems Implemen-

tation and Testing. In: The Fourth International Symposium: From Agent Theory to Agent
Implementation, Vienna (2004)

14. Rouff, C.: A Test Agent for Testing Agents and their Communities. In: Proceedings on
Aerospace Conference, vol. 5, p. 2638. IEEE, Los Alamitos (2002)

15. Padgham, L., Winikoff, M., Poutakidis, D.: Adding Debugging Support to the Prometheus
Methodology. Engineering Applications of Artificial Intelligence, special issue on Agent-
Oriented Software Development 18, 173–190 (2005)

16. Coelho, R., Kulesza, U., von Staa, A., Lucena, C.: Unit Testing in Multi-Agent Systems using
Mock Agents and Aspects. In: Proceedings of the 2006 International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems, pp. 83–90 (2006)

17. Thangarajah, J., Padgham, L., Winikoff, M.: Prometheus design tool. In: The 4th Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems, Utrecht, The
Netherlands, pp. 127–128 (2005)

	Model Based Testing for Agent Systems
	Introduction
	Test Units
	Testing Plans
	Testing Plan Cycles
	Testing Events

	Testing Process: Overview
	The Testing Framework
	Automated Code Augmentation

	The Order of Testing
	Test Case Input Generation
	Extraction of Variables
	The Generation of ECs
	Reducing the Size of the Test Set

	Case Study
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

